
Best Practices

22 CROSSTALK The Journal of Defense Software Engineering March 2003

Agile methods and extreme program-
ming have risen to the forefront of

software management and development
interest during the last few years. Two defi-
nitions of agile are (1) able to move quickly
and easily, and (2) mentally alert. Both defi-
nitions rely on the capabilities of the people
within the development process.

The “Agile Manifesto” [1] published in
Software Development in 2001 created a new
wave of interest in the agile philosophy and
reemphasized the importance of people.
One of the points highlighted in the mani-
festo is, “We value individuals and interac-
tions over processes and tools.” That does
not mean processes and tools are evil. It
implies that individuals and interactions
(people) are of higher priority than process-
es and tools.

Textbooks [2, 3] describe the impor-
tance of people in these new software
development approaches that have demon-
strated improved productivity and product
quality. Extreme programming (XP) [4] is one
member covered by the umbrella of agile
methods. Pair programming [5] is a major prac-
tice [6] of XP. The official definition of pair
programming is two programmers working
together, side by side, at one computer col-
laborating on the same analysis, design,
implementation, and test. In other words,
consider it like two programmers using one
pencil.

We have all experienced elements of the
pair-programming concept in one way or
another during our lives. How many times
have you been stuck removing an error
from a design or program with no success?
When everything else failed, you went to
your neighbor programmer, the casual observ-
er, to see if you could get some assistance.
While explaining the problem, you have a
flash of inspiration, and the problem is
quickly solved. How much time did you
waste before asking a neighbor for insight?
Can you relate this to pair programming?

I was introduced to pair programming
indirectly as an undergraduate electrical
engineering student in the 1950s. The class
and laboratory workload were such that any
free time during the four-year program was
more wishful thinking than reality. Working
part time made the program even more
daunting. Fortunately, two other electrical
engineering students in the same academic
program were struggling with different sets
of outside commitments. We decided to
work together on homework assignments,
lab work, and test preparation to lighten the
course load.

We successfully maintained this
approach through the entire program in
spite of having been conditioned through-
out our lives to perform solitary work. Our
educational system does not condone or
encourage teamwork. That education phi-
losophy supports individual student evalua-
tion, but works against learning. The team-
work concept became ingrained in my
thinking as well as in my programming and
management research activities.

Much later, I was asked to find ways to
improve programmer productivity in a large
software organization. The undergraduate
experience led me to propose an experiment
in the application of what we called two-per-
son programming teams. The term pair pro-
gramming had not been coined at that time.

The experiment results are the subject of
the remainder of this article.

Development Task
Problem
Providing a description of the results
achieved through pair programming with-
out knowledge of the project or develop-
ment task underlying the experience would
be meaningless. The software to be devel-
oped in this project was a multitasking real-
time system executive. The product consist-
ed of six independent components contain-
ing a total of approximately 50,000 source
lines of code. The product contained no
reused or commercial-off-the-shelf compo-
nents. Fortran was the required software
development language. The real-time execu-
tive was to be used to support the develop-
ment of a large, complex software system
by the developing organization. The devel-
opment schedule for the executive was crit-
ical and short.

Team Composition
The development team consisted of 10
programmers with a wide range of experi-
ence and one manager. I tend to divide
managers into two primary groups: Theory
X1 and Theory Y2 [7, 8]. The manager for
this task was experienced and from the
Theory Y group.

The 10 programmers assigned to the
executive development had prior experi-
ence that ran the gamut from an expert sys-
tem programmer to a couple of fresh,
young college graduates. None of these
programmers had any experience working
in a team environment. As a collection, I
would place them as about average for that
development organization.

The manager grouped the program-
mers into five teams according to their
experience level. Each team pair was com-
posed of the most experienced and least
experienced programmer of the remaining

A Pair Programming Experience
Dr. Randall W. Jensen

Software Technology Support Center

Agile software development methods, including extreme programming, have risen to the forefront of software management and
development interest during the last few years. The “Agile Manifesto” published in 2001 created a new wave of interest in
the agile philosophy and re-emphasized the importance of people, along with the idea of “pair programming.” As defined,
pair programming is two programmers working together, side by side, at one computer collaborating on the same analysis,
design, implementation, and test. I was introduced to teamwork and pair programming indirectly as an undergraduate elec-
trical engineering student in the 1950s. Later in 1975, I was asked to improve programmer productivity in a large software
organization. The undergraduate experience led me to an experiment in pair programming. The very positive results of this
experiment are the subject of the case study in this article.

“The second major
benefit demonstrated in

this experiment – a
three order-of-magnitude

improvement in error
rate – is hard to ignore.”

March 2003 www.stsc.hill.af.mil 23

A Pair Programming Experience

group. The first team consisted of the
expert system programmer and a person
who had just returned from a six-year leave
of absence. The fifth team consisted of
two programmers of near equal capability
and experience. These first and fifth pro-
gramming teams were important in the way
they impacted the project. I will address
their impacts in the Lessons Learned sec-
tion of this article.

No special changes from normal were
made to the development environment.
The facilities were essentially two-person
cubicles. The programming pairs were col-
located in these cubicles. Each cubicle con-
tained two computer workstations, two
desks, and a common worktable. The pair-
programming approach dictated that the
pair (remember: two programmers, one
pencil) use only one development terminal
located on the common worktable. The
second terminal was to be used for docu-
mentation, etc., not related to the team’s
assigned development.

One programmer of the pair func-
tioned as the driver operating the keyboard
and mouse, while the second programmer
functioned more as a navigator or co-pilot.
The navigator reviewed, in real time, the
information entered by the driver. The
roles of the two programmers were not
permanent; frequent role changes occurred
daily. The navigator was not a passive role
at any time.

Results
A Priori
Project individuals could not directly
obtain a productivity and error baseline for
the project, but data was available from
past projects that allowed them to project
productivity and error averages for the
project. The average productivity and error
rates in most organizations with consistent
management style and processes are near
constant and quite predictable. The base-
line productivity was determined to be
approximately 77 source lines per person-
month. The error rate for the development
organization was normal for the aerospace
industry. The numerical error rate value is
not significant for this presentation, and
will remain unknown.

Formal design walkthroughs and soft-
ware inspections were not scheduled for
this project. It would follow a classic water-
fall development approach, which is incon-
sistent with today’s agile methods. Formal
preliminary and critical design reviews, as
well as a final qualification test were
planned. Formal review and test documen-
tation were reduced to essential informa-
tion; that is, all elements necessary to pro-
ceed with the development.

A Posteriori
The productivity achieved in the real-time
executive development was 175 source lines
per person-month as shown in Table 1. We
hoped for a productivity gain of anything
greater than 0 percent. Any small gain
would have compensated for the two pro-
grammers loading on each task. The 127
percent gain achieved was phenomenal and
a cause for celebration.

The error analysis showed the project
had achieved an error rate that was three
orders of magnitude less than normal for
the organization. Integration of the first
two components (approximately 10,000
source lines) was completed with only two
coding errors and one design error. The
third component was integrated with no
errors. The remaining three components
had more errors, but the number of errors
for these components was significantly less
than normal.

The continuous walkthrough assumption
was demonstrated to be very effective and
more than compensated for the lack of for-
mal walkthroughs. The formal preliminary
and critical design reviews, as well as a final
qualification test, were effective in keeping
the five teams coordinated. Few problems
were uncovered in the review and test activ-
ities.

After the experiment was completed,
the development manager presented the
very positive results to the organization’s
management staff. The project managers’
reaction to the results was memorable –
they claimed that their senior programmers
would quit before they would team with
another programmer. The use of pair pro-
grammers was never implemented in that
organization.

Lessons Learned
Several positive and some negative charac-
teristics were observed during the pair-pro-
gramming experiment. In general, the
attributes of the college experience were
exhibited here. The positive attributes, not
necessarily in any order, are as follows:
• Brainstorming. According to the pro-

grammers, active real-time collaboration
produced higher quality designs than
would have been achieved working
alone. Little time was lost optimizing
code with more than one brain working.

• Continuous Design Walkthrough.
The design and code were reviewed in
real time by both programmers who

ultimately produced fewer errors in each
team product. Classic walkthroughs and
inspections are, whether we like it or
not, somewhat adversarial. The continu-
ous walkthroughs within the team were
more positive and supportive.

• Focused Energy. The individual teams
appeared to be more focused in their
activities. The highly visible aspect of
this attribute was that programmers
took fewer breaks for restrooms, coffee,
outside discussions, etc.

• Mentor. When we started work in this
industry, we were usually told about on-
the-job training that never materialized.
Pair programming, when the two pro-
grammers were not of the same experi-
ence level, provided a crafts-
man/apprentice relationship that elevat-
ed the junior programmer’s skill quickly.
Conversely, the craftsman’s skill is
extended by the apprentice’s questions
and thinking outside of the box.

• Motivation. In general, the program-
ming pairs appeared much more moti-
vated than their single counterparts. The
motivation level cannot be solely attrib-
uted to the pair concept or the experi-
ment itself. Some of the motivation
must be attributed to the project manag-
er. Some must be attributed to rapid
progress and the product quality. One of
the Theory Y assumptions is that moti-
vation occurs at the social, esteem, and
self-actualization levels, as well as physi-
ological and security levels.

• Problem Isolation. The time wasted
with two pairs of eyes (or brains) was
significantly less than the amount of
time wasted trying to solve a problem in
isolation.
Conversely, the negative observations

cannot be ignored. The important observa-
tions, not necessarily in order of impor-
tance, are as follows:
• Counter-Productivity. Pairing pro-

grammers of the same experience and
capability level is often counter-produc-
tive. The most troublesome pairs we
dealt with during the experiment were
two teams in which both members were
near the same capability level. The
worst-case team consisted of two prima
donna programmers. The programming
pair theoretically has equal responsibility
for the team’s efforts and product. We
found teams functioned more smoothly,
in spite of the members equally being

Topic Historical Pair Results Gain
Productivity (lines/person-month) 77 175 127 percent
Error Rate 0.001 x normal

Table 1: Pair Programming Productivity and Error Rate Gains

Best Practices

24 CROSSTALK The Journal of Defense Software Engineering March 2003

driver and navigator, if one member
was slightly more capable than the
other was. I read a statement by a soft-
ware industry leader that stated hiring
software engineers from the top 10
percentile of the top 10 universities
would produce the best software devel-
opment teams. I cannot imagine the
stress that many egos can create on
one project. Two strong egos of any
caliber on a team create chaos until
they recognize the power of two
minds.

• Common Area. Coordination
between the five teams would have
improved if the teams had been work-
ing in a common area. Each team was
located in a two-person cubicle, which
limited the interaction between the
teams. I use the term war room (or
skunk works) to describe the ideal
open environment, which would be a
large area with worktables in the center
and cubicles around the outside.
Some additional characteristics of the

successful experiment are noteworthy.
First, one of the manager’s principle
responsibilities was to buffer the teams
from outside interference. The manager
listed other important responsibilities that
included referee (in the case of the prima
donnas), arbitrator, coordinator, planner,
cheerleader, and supplier of popcorn and
other junk food.

Second, project managers must be sup-
portive of the pair programming process.
A classic (Theory X) manager observed a
programming pair working on a design
over a period of time. This manager sug-
gested to their supervisor that one of the
two programmers be laid off because only
one was doing anything constructive. (The
driver always gets the credit.) When the
supervisor heard the suggestion, he
replied that these programmers were the
most productive people in the organiza-
tion. The manager then asked that the
programmers keep their office door closed
so others would not get the same idea.

Summary
Most managers who have not experienced
pair programming reject the idea without
trial for one of two reasons. First, the con-
cept appears redundant and wasteful of
computing resources. Why would I want
to use two programmers to do the work
that one can do? How can I justify a 100
percent increase in person-hours to use
this development approach? The project
cannot afford to waste limited resources.

The second reason is the assumption
that programmers prefer to work in isola-
tion. Programmers, like most other people,

have been trained to work alone. Yet
according to the 1984 Coding War Games
sponsored by the Atlantic Systems Guild,
only one-third of a programmer’s time is
spent in isolation; two-thirds of the time is
spent communicating with team members.
Managers wonder about the necessary
adjustments to another’s work habits and
programming style. They also worry about
ego issues and disagreements about the
product’s implementation.

This experiment demonstrated strong-
ly that programmers can work together
effectively and efficiently to produce a
quality product of which both program-
mers can be proud. Prior programming
experience is not an issue. There are initial
situations, especially with a team of equal
experience and ego, where disagreements
arise over who will be the driver. Those sit-
uations are generally transient. The bene-
fits listed in the results section over-
whelmed any personality issues that arose.

The second major benefit demonstrat-
ed in this experiment – a three order-of-
magnitude improvement in error rate – is
hard to ignore. Repairing defects after
developments is much more expensive
than uncovering and fixing the defects
where they occur. The benefits of devel-
oping and delivering a stable product
faster, reducing maintenance costs, and
gaining customer satisfaction certainly
minimize the risk of using pair-program-
ming teams.◆

References
1. The Agile Alliance. “The Agile

Manifesto.” Software Development 9.8
(Aug. 2001).

2. DeMarco, Tom, and T. Lister.
Peopleware. New York: Dorset House
Publishers, 1977.

3. Weinberg, G. M. The Psychology of
Computer Programming Silver Anni-
versary Edition. New York: Dorset
House Publishers, 1998.

4. Beck, Kent. Extreme Programming
Explained: Embracing Change.
Reading, MA: Addison-Wesley, 2000.

5. Williams, L., R. R. Kessler, W.
Cunningham, and R. Jeffries.
“Strengthening the Case for Pair
Programming.” IEEE Software 17.4
(July/Aug. 2000): 19-25.

6. Beck, Kent. “Embracing Change with
Extreme Programming.” Computer
Oct. 1999: 71.

7. Hersey, P., and K. H. Blanchard.
Management of Organizational Be-
havior, Utilizing Human Resources.
Englewood Cliffs, NJ: Prentice-Hall,
1977.

8. McGregor, D. The Human Side of

Enterprise. New York: McGraw-Hill,
1960.

Note
1. Theory X assumes the following: (1)

Work is inherently distasteful to most
people. (2) Most people are not ambi-
tious, have little desire for responsibility,
and prefer to be directed. (3) Most peo-
ple have little capacity for creativity in
solving organizational problems. (4)
Most people must be closely controlled
and often coerced to achieve organiza-
tional objectives.

2. Theory Y assumes the following: (1)
Work is as natural as play, if conditions
are favorable. (2) Self-control is often
indispensable in achieving organization
goals. (3) The capacity for creativity in
solving organizational problems is wide-
ly distributed in the population. (4)
People can be self-directed and creative
at work if properly motivated.

About the Author
Randall W. Jensen,
Ph.D., is a consultant
for the Software
Technology Support
Center, Hill Air Force
Base, with more than

40 years of practical experience as a
computer professional in hardware
and software development. He devel-
oped the model that underlies the Sage
and the GAI SEER-SEM software
cost and schedule estimating systems.
Jensen received the International
Society of Parametric Analysts
Freiman Award for Outstanding
Contributions to Parametric Estima-
ting in 1984. He has published several
computer-related texts, including
“Software Engineering,” and numer-
ous software and hardware analysis
papers. He is currently preparing
“Extreme Software Estimating” for
Prentice-Hall, Inc. Dr. Jensen has a
bachelor’s of science degree in electri-
cal engineering, a master’s of science
degree in electrical engineering, and a
doctorate in electrical engineering
from Utah State University.

Software Technology Support Center
7278 4th St.
Bldg. 100 G58
Hill AFB, UT 84056
Phone: (801) 775-5733
Fax: (801) 777-8069
E-mail: randall.jensen@hill.af.mil

